
IACE-Indian Academy Of Competitive Exams IBPS SO PROFESSIONAL KNOWLEDGE

Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 1

OPERATING SYSTEM

 An operating system is a program that manages the computer hardware. It also provides a basis for application

programs and acts as an intermediary between the computer user and the computer hardware. An amazing aspect of

operating systems is how varied they are in accomplishing these tasks. Mainframe operating systems are designed primarily

to optimize utilization of hardware. Personal computer (PC) operating systems support complex games, business

applications, and everything in between. Operating systems for handheld computers are designed to provide an environment

in which a user can easily interface with the computer to execute programs. Thus, some operating systems are designed to

be convenient, others to be efficient, and others some combination of the two.

 An operating system is large and complex, it must be created piece by piece. Each of these pieces should be a well-

delineated portion of the system, with carefully defined inputs, outputs and functions.

MULTIPROGRAMMING:

One of the most important aspects of operating systems is the ability to multiprogramming. A single user cannot, in general,

keep either the cru or the I/O devices busy at all times. Multiprogramming increases CPU utilization by organizing

jobs?(code and data) so that the CPU always has one to execute.

 The operating system keeps several jobs in memory simultaneously This set of jobs can be a subset of the jobs kept

in the job pool-which contains all jobs that enter the system-since the number of jobs that can be kept simultaneously in

memory is usually smaller than the number of jobs that can be kept in the job pool. The operating system picks and begins

to execute one of the jobs in memory. Eventually, the job may have to wait for some task, such as an I/O operation, to

complete.

Operating System

Job 1

Job 2

Job 3

Job 4

Memory layout for a multiprogramming System: In a non-multiprogrammed system, the CPLJ would sit idle. In a

multiprogrammed system, the operating system simply switches to, and executes, another job. When that job needs to wait,

the CIJU is switched to another job, and so on. Eventually, the first job finishes waiting and gets the CPU back. As long as

at least one job needs to execute, the CPU is never idle. This idea is common in other life situations. A lawyer does not

work for only one client at a time, for example. While one case is waiting to go to trial or have papers typed, the lawyer can

work on another case. If he has enough clients, the lawyer will never be idle for lack of work. (Idle lawyers tend to become

politicians, so there is a certain social value in keeping lawyers busy.)

Multiprogrammed systems provide an environment in which the various system resources (for example, CPU, memory, and

peripheral devices) are utilized effectively, but they do not provide for user interaction with the computer system.

STORAGE STRUCTURE: Computer programs must be in main memory (also called random-access memory or RAM)

to be executed. Main memory is the only large storage area (millions to billions of bytes) that the processor can access

directly. It commonly is implemented in a semiconductor technology called dynamic random-access memory (DRAM),

which forms an array of memory words. Each word has its own address. Interaction is achieved through a sequence of load

or store instructions to specific memory addresses. The load instruction moves a word from main memory to an internal

register with in the CPU, whereas the store instruction moves the content of a register to main memory. Aside from explicit

loads and stores, the CPU automatically loads instructions from main memory for execution.

A typical instruction-execution cycle, as executed on a system with a von Neumann architecture, first fetches an instruction

from memory and stores that instruction in the instruction register. The instruction is then decoded and may cause operands

to be fetched from memory and stored in some internal register. After the instruction on the operands has been executed, the

result may be stored back in memory. Notice that the memory unit sees only a stream of memory addresses; it does not

know how they are generated (by the instruction counter, indexing, indirection, literal addresses, or some other means) or

what they are for instructions data). Accordingly, we can ignore how a memory address is generated by a program. We are

interested only in the sequence of memory addresses generated by the running program.

Ideally, we want the programs and data to reside in main memory permanently. This arrangement usually is not possible for

the following two reasons:

1. Main memory is usually too small store all needed programs and data permanently.

2. Main memory is a volatile storage device that loses its contents when power is turned off or otherwise lost.

0

512M

IACE-Indian Academy Of Competitive Exams IBPS SO PROFESSIONAL KNOWLEDGE

Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 2

Thus, most computer systems provide secondary storage as an extension of main memory. The main requirement for

secondary storage is that it be able to hold large quantities of data permanently.

 Figure: Storage Structure

The most common secondary storage device is a magnetic disk, which provides storage for both programs and data. Most

programs (web browsers, compilers, word processors, spreadsheets, and so on) are stored on disk until they are loaded into

memory. Many programs then use the disk as both a source and a destination of the information for their processing. Hence,

the proper management of disk storage is of central importance to a computer system.

In a larger sense, however, the storage structure that we have described consisting of registers, main memory, and magnetic

disks-is only one of many possible storage systems. Others include cache memory, CD-ROM, magnetic tapes, and so on.

Each storage system provides the basic functions of storing a datum and of holding that datum until it is retrieved at a later

time. The main differences among the various storage systems lie in speed, cost, size, and volatility.

The wide variety of storage systems in a computer system can be organized in a hierarchy according to speed and cost. The

higher levels are expensive, but they are fast. As we move down the hierarchy, the cost per bit generally decreases, whereas

the access time generally increases. This trade-off is reasonable; if a given storage system were both faster and less

expensive than another – other properties being the same then there would be no reason to use the slower, more expensive

memory. In fact, many early storage devices, including paper tape and core memories, are relegated to museums now that

magnetic tape and semiconductor memory have become faster and cheaper. The top four levels of memory may be

constructed using semiconductor memory.

TIME SHARING SYSTEM: Time sharing (or multitasking) is a logical extension of multiprogramming. In time-sharing

systems, the CPU executes multiple jobs by switching among them, but the switches occur so frequently that the users can

interact with each program while it is running.

Time sharing requires an interactive (Or hands-on) computer system, which provides direct communication between the

user and the system. The user gives instructions to the operating system or to a program directly, using an input device such

as a keyboard or a mouse, and waits for immediate results on an output device. Accordingly, the response time should be

short typically less than one second.

A time shared operating system allows many users to share the computer simultaneously. Since each action or command in

a time-shared system tends to be short, only a little CPU time is needed for each user. As the system switches rapidly from

one user to the next, each user is given the impression that the entire computer system is dedicated to his use, even though it

is being shared among many users.

A time-shared operating system uses CPU scheduling and multiprogramming to provide each user with a small portion of a

time shared computer. Each user has at least one separate program in memory. A program loaded into memory and

executing is called a process. When a process executes, it typically executes for only a short time before it either finishes or

needs to perform I/O. I/O may be interactive; that is, output goes to a display for the user, and input comes from a user

keyboard, mouse, or other device. Since interactive I/O typically runs at “people speeds,” it may take a long time to

complete. Input, for example, may be bounded by the user‟s typing speed; seven characters per second is fast for people but

Register
s

Cache

Main Memory

Electronic Disk

Magnetic Disk

Optical Disk

Magnetic Tapes

IACE-Indian Academy Of Competitive Exams IBPS SO PROFESSIONAL KNOWLEDGE

Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 3

incredibly slow for computers. Rather than let the CPU sit idle as this interactive input takes place, the operating system will

rapidly switch the CPU to the program of some other user.

OPERATING SYSTEM SERVICES: An operating system provides an environment for the execution of programs. It

provides certain services to programs and to the users of those programs. The specific services provided, of course, differ

from one operating system to another, but we can identify common classes. These operating system services are provided

for the convenience of the programmer, to make the programming task easier. One set of operating system services provides

functions that are helpful to the user.

1. User interface: Almost all operating systems have a user interface (UI). This interface can take several forms. One is a

command-line interface (CLI), which uses text commands and a method for entering them (say, a program to allow entering

and editing of commands). Another is a batch interface, in which commands and directives to control those commands are

entered into files, and those files are executed. Most commonly, a graphical user interface (GUI) is used. Here, the

interface is a window system with a pointing device to direct I/O, choose from menus, and make selections and a keyboard

to enter text. Some systems provide two or all three of these variations.

2. Program Execution: The system must be able to load a program into memory and to run that program. The program

must be able to ends its execution, either normally or abnormally (indicating error).

I/O Operations: A running program may require I/O, which may involve a file or an I/O device. For specific devices,

special functions may be desired (such as recording to a CD or DVD drive or blanking a CRT screen). For efficiency and

protection, users usually cannot control I/O devices directly. Therefore, the operating system must provide a means to do

I/O.

File-system manipulation: The file system is of particular interest. Obviously, programs need to read and write files and

directories. They also need to create and delete them by name, search for a given file, and list file information. Finally, some

programs include permissions management to allow or deny access to files or directories based on file ownership.

Communications: There are many circumstances in which one process needs to exchange information with another

process. Such communication may occur between processes that are executing on the same computer or between processes

that are executing on different computer systems tied together by a computer network. Communications may be

implemented via shared memory through message passing, in which packets of information are moved between processes

by the operating system.

3. Error detection: The operating system needs to be constantly aware of possible errors. Errors may occur in the CPU and

memory hardware (such as a memory error or a power failure), in I/O devices (such as a parity error on tape, a connection

failure on a network, or lack of paper in the printer), and in the user program (such as an arithmetic overflow, an attempt to

access an illegal memory location, or atoo-great use of CPU time). For each type of error, the operating system should take

the appropriate action to ensure correct and consistent computing. Debugging facilities can greatly enhance the user‟s and

programmer‟s abilities to use the system efficiently.

Another set of operating system functions exists not for helping the user but rather for ensuring the efficient operation of the

system itself. Systems with multiple users can gain efficiency by sharing the computer resources among the users.

Resources allocation: When there are multiple users or multiple jobs running at the same time, resources must be allocated

to each of them. Many different types of resources are managed by the operating system. Some (such as CPU cycles, main

memory, and file storage) may have special allocation code, whereas others (such as I/O devices) may have much more

general request and release code. For instance, in determining how best to use the CPU, operating systems have CPU-

scheduling routines that take into account the speed of the CPU, the jobs that must be executed, the number of registers

available, and other factors. There may also be routines to allocate printers, modems, USE storage drives, and other

peripheral devices.

Accounting: We want to keep track of which users how much and what kinds of computer resources. This record keeping

may be used for accounting (so that users can be billed) or simply for accumulating usuage statistics. Usage statistics may

be a valuable tool for researchers who wish to reconfigure the system to improve computing services.

Protection and security: The owners of information stored in a multiuser or networked computer system may want to

control use of that information. When several separate processes execute concurrently, it should not be possible for one

process to interfere with the others or with the operating system itself. Protection involves ensuring that all access to system

resources is controlled. Security of the system from outsiders is also important. Such security starts with requiring each user

to authenticate himself or herself to the system, usually by means of a password, to gain access to system resources. It

extends to defending external I/O devices, including modems and network adapters, from invalid access attempts and to

recording all such connections for detection of break-ins. If a system is to be protected and secure, precautions must be

instituted through out it. A chain is only as strong as its weakest link.

SYSTEM CALLS: System calls provide an interface to the services made available by an operating system. These calls are

generally available as routines written in C and C++, although certain low-level tasks (for example, tasks where hardware

must be accessed directly), may need to be written using assembly-language instructions.

Writing a simple program to read data from one file and copy them to another file. The first input that the program will need

is the names of the two files: the input file and the output file. These names can be specified in many ways, depending on

the operating system design. One approach is for the program to ask the user for the names of the two files. In an interactive

system, this approach will require a sequence of system calls, first to write a prompting message on the screen and then to

IACE-Indian Academy Of Competitive Exams IBPS SO PROFESSIONAL KNOWLEDGE

Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 4

read from the keyboard the characters that define the two files. On mouse-based and icon-based systems, a menu of file

names is usually displayed in a window, the user can then use the mouse to select the source name, and a window can be

opened for the destination name to be specified. This sequence requires many I/O system calls.

Once the two file names are obtained the program must open the input file and create the output file. Each of these

operations requires another system call. There are also possible error conditions for each operation. When the program tries

to open the input file, it may find that there is no file of that name or that the file is protected against access. In these cases,

the program should print a message on the console (another sequence of system calls) and then terminate abnormally

(another system call). If the input file exists, then we must create a new output file. We may find that there is already an

output file with the same name. This situation may cause the program to abort (a system call), or we may delete the existing

file (another system call) and create a new one (another system call). Another option, in an interactive system, is to ask the

user (via a sequence of system calls to output the prompting message and to read the response from the terminal) whether to

replace the existing file or to abort the program.

Now that both files are set up, we enter a loop that reads from the input file (a system call) and writes to the output file

(another system call). Each read and write must return status information regarding various possible error conditions. On

input, the program may find that the end of the file has been reached or that there was a hardware failure in the read (such as

a parity error). The write operation may encounter various errors, depending on the output device (no more disk space,

printer out of paper, and so on). Finally, after the entire file is copied, the program may close both files (another system

call), write a message to the console or window (more system calls), and finally terminate normally (the final system call).

As we can see, even simple programs may make heavy use of the operating system. Frequently, system execute thousands

of system calls per second.

The caller needs to know nothing about how the system call is implemented or what it does during execution. Rather, it just

needs to obey the API and understand what the operating system will do as a result of the exection of that system call. Thus,

most of the details of the operating system interface are hidden from the programmer by the API and are managed by the

run-time support library. The relationship between an API, the system-call interface, and the operating system is shown in

example. Which illustrates how the operating system handles a user application invoking the open () system call.

System calls occur in different ways, depending on the computer in use. Often, more information is required than simply the

identity of the desired system call. The exact type and amount of information vary according to the particular operating

system and call. For example, to get input, we may need to specify the file or device to use as the source, as well as the

address and length of the memory buffer into which the input should be read. Of course, the device or file and length may

be implicit in the call.

Types of System Calls: System calls can be grouped roughly into five major categories: process control, file manipulation,

device manipulation, information maintenance, and communications. Types of system calls that may be provided by an

operating system. Most of these system calls support, or are supported by, concepts and functions.

Source File Destination file

Example System Call Sequence
Acquire input file name
 Write prompt to screen
 Accept input
Acquire output file name
 Write prompt to screen
 Accept input
Open the input file
 if file doesn’t exist, abort
Create output file
 if file exists, abort
Loop
 Read from input file
 Write to output file
Until read fails
Close output file
Write completion message to screen
Terminate normally

IACE-Indian Academy Of Competitive Exams IBPS SO PROFESSIONAL KNOWLEDGE

Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 5

Figure: The Handling of a User Application Invoking The Open () System Call

Process Control: A running program needs to be able to halt its execution either normally (end) or abnormally (abort). If a

system call is made to terminate the currently running program abnormally, or if the program runs into a problem and causes an

error trap, a dump of memory is sometimes taken and an error message generated. The dump is written to disk and may be

examined by a debugger a system program designed to aid the programmer in finding and correcting bugs – to determine the

cause of the problem. Under either normal or abnormal circumstances, the operating system must transfer control to the invoking

command interpreter. The command interpreter then reads the next command. In an interactive system, the command interpreter

simply continues with the next command; it is assumed that the user will issue an appropriate command interpreter simply

continues with the next command; it is assumed that the user will issue an appropriate command to respond to any error. In a GUI

system, a pop-up window might alert the user to the error and ask for guidance. In a batch system, the command interpreter

usually terminates the entire job and continues with the next job.

Many operating systems provide a time profile of a program to indicate the amount of time that the program executes at a

particular location or set of locations. A time profile requires either a tracing facility or regular timer interrupts. At every

occurrence of the timer interrupt, the value of the program counter is recorded. With sufficiently frequent timer interrupts, a

statistical picture of the time spent on various parts of the program can be obtained.

 (a) (b)

System call interface

User Application

User
mode

Kernel
mode

∙
∙
∙

∙
∙
∙

Open (

i

Open ()

Implementation
of open ()

System call

 Ā
 Ā
 Ā

 return

 Free memory

Free memory

Command

Interpreter Command

Interpreter

Kernel Kernel

IACE-Indian Academy Of Competitive Exams IBPS SO PROFESSIONAL KNOWLEDGE

Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 6

MS-DOS execution (a) At system start-up. (b) Running a program

 There are so many facets of and variations in process and job control that we next use two examples one involving

a single-tasking system and other a multitasking system-to clarify these concepts. The MS-DOS operating system is an

example of a single-tasking system. It has a command interpreter that is invoked when the computer is started. Because MS-

DOS is single-tasking. It uses a simple method to run a program and does not create a new process. It loads the program

into memory, writing over most of itself to give the program as much memory as possible next, it sets the instruction pointer

to the first instruction of the program. The program then runs, and either an error cause a trap, or the program executes a

system call to terminate. In either case, the error code is saved in the system memory for later use. Following this action the

small portion of the command interpreter that was not reload the rest of the command interpreter from disk. Then the

command interpreter makes the previous error code available to the user or to the next program.

File Management: We first need to be able to create and delete files. Either system call requires the name of the file and

perhaps some of the file‟s attributes. Once the file is created, we need to open it and to use it. We may also read, write, or

reposition (rewinding or skipping to the end of the file, for example). Finally, we need to close the file, indicating that we

are no longer using it.

We may need these same sets of operations for directories if we have a directory structure for organizing files in the file

system. In addition, for either files or directories, we need to be able to determine the values of various attributes and

perhaps to reset them if necessary. File attributes include the file name, a file type, protection codes, accounting

information, and so on. At least two system calls, get file attribute and set file attribute, are required for this function. Some

operating systems provide many more calls, such as calls for file move and copy. Others might provide an API that

performs those operations using code and other system calls, and others might just provide system programs to perform

those tasks. If the system programs are callable by other programs, then each can be considered an API by other system

programs.

Device Management: A process may need several resources to execute main memory, disk drives, access to files, and so

on. If the resources are available, they can be granted, and control can be returned to the user process. Otherwise, the

process will have to wait until sufficient resources are available.

The various resources controlled by the operating system can be thought of as devices. Some of these devices are physical

devices (for example, tapes), while others can be thought of as abstract or virtual devices (for example, files). If there are

multiple users of the system, the system may require us to first request the device, to ensure exclusive use of it. After we are

finished with the device, we release it. These functions are similar to the open and close system calls for files. Other

operating systems allow unmanaged access to devices. The hazard then is the potential for device contention and perhaps

deadlock.

Once the device has been requested (and allocated to us), we can read, write, and (possibly) reposition the device, just as we

can with files. In fact, the similarity between I/O devices and files is so great that many operating systems, including UNIX,

merge the two into a combined file-device structure. In this case, a set of system calls is used on files and devices.

Sometimes, I/O devices are identified by special file names, directory placement, or file attributes.

The UI can also make files and devices appear to be similar, even though the underlying system calls are dissimilar. This is

another example of the many design decisions that go into building an operating system and user interface.

Information Maintenance:

Many system calls exist simply for the purpose of transferring information between the user program and the operating

system. For example, most systems have a system call to return the current time and date. Other system calls may return

information about the system, such as the number of current users, the version number of the operating system, the amount

of free memory or disk space, and so on. In addition, the operating system keeps information about all its processes, and

system calls are used to access this information. Generally, calls are also used to reset the process information (get process

attributes and set process attributes).

Communication: There are two common models of interprocess communication: the message-passing model and the

shared-memory model. In the message-passing model, the communicating processes exchange messages with one another

to transfer information. Messages can be exchanged between the processes either directly or indirectly through a common

mailbox. Before communication can take place, a connection must be opened. The name of the other communicator must be

known, be it another process on the same system or a process on another computer connected by a communications

network. Each computer in a network has a host name by which it is commonly known. A host also has a network identifier,

such as an IP address. Similarly, each process has a process name, and this name is translated into an identifier by which the

operating system can refer to the process. The get host id and get process id system calls do this translation. The identifiers

are then passed to the general purpose open aqnd close calls provided by the file system or to specific open connection and

close connection system calls, depending on the system‟s model of communication. The recipient process usually must give

its permission for communication to take place with an accept connection call. Most processes that will be receiving

connections are special-purpose daemons, which are systems programs provided for that purpose. They execute a wait for

connection call and are awakened when a connection is made. The source of the communication, known as the client, and

IACE-Indian Academy Of Competitive Exams IBPS SO PROFESSIONAL KNOWLEDGE

Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 7

the receiving daemon, known as a server, then exchange messages by using read message and write message system calls.

The close connection call terminates the communication.

In the shared-memory model, processes use shared memory create and shared memory attach system calls to create and gain

access to regions of memory owned by other processes. Recall that, normally, the operating system tries to prevent one

process from accessing another process‟s memory. Shared memory requires that two or more processes agree to remove this

restriction. They can then exchange information by reading and writing data in the shared areas. The form of the data and

the location are determined by the processes and are not under the operating system‟s control. The processes are also

responsible for ensuring that they are not writing to the same location simultaneously.

Both of the models just discussed are common in operating systems, and most systems implement both.

Message passing is useful for exchanging smaller amounts of data, because no conflicts need be avoided. It is also easier to

implement than is shared memory for intercomputer communication. Shared memory allows maximum speed and

convenience of communication, since it can be done at memory speeds when it takes place within a computer. Problems

exist, however, in the areas of protection and synchronization between the processes sharing memory.

MULTIPROCESSOR OPERATING SYSTEMS: A shared – memory multiprocessor (or just multiprocessor henceforth)

is a computer system in which two or more CPUs share full access to a common RAM. A program running on any of the

CPUs sees a normal (usually paged) virtual address space. The only unusual property this system has is that the CPU can

write some value into a memory word and then read the word back and get a different value (because another CPU has

changed it). When organized correctly, this property forms the basis of interprocessor communication: One CPU writes

some data into memory and another one reads the data out.

For the most part, multiprocessor operating systems are just regular operating systems. They handle system calls, do

memory management, provide a file system, and manage I/O devices. Nevertheless, there are some areas in which they have

unique features. These include process synchronization, resource management, and scheduling.

An increasingly common way to get major-league computing power is to connect multiple CPUs into a single system.

Depending on precisely how they6 are connected and what is shared, these systems are called parallel computers,

multicomputers, or multiprocessors. They need special operating systems, but often these are variations on the server

operating systems, with special features for communication and connectivity.

CONCEPTS OF CPU SCHEDULING: Whenever the CPU becomes idle, the operating system select one of the

processes in the ready queue to be executed. The selection process is carried out by the short-term scheduler (or CPU

scheduler). The scheduler selects a process from the processes in memory that are ready to execute and allocates the CPU to

that process.

Note that the ready queue is not necessarily a first-in, first-out (FIFO) queue. As well shall see when we consider the

various scheduling algorithms, a ready queue can be implemented as a FIFO queue, a priority queue, a tree, or simply an

unordered linked list. Conceptually, however, all the processes in the ready queue are lined up waiting for a chance to run

on the CPU. The records in the queues are generally process control blocks (PCBs) of the processes.

Preemptive Scheduling:

CPU-scheduling decisions may take place under the following four circumstances:

1. When a process switches from the running state to the waiting state (for example, as the result of an I/O request or an

invocation of wait for the termination of one of the child processes)

2. When a process switches from the ru~~ ninstgate to the ready state (for example, when an interrupt occurs)

3. When a process switches from the waiting state to the ready state (for example, at completion of I/O)

4. When a process terminates

For situations 1 and 4, there is no choice in terms of scheduling. A new process (if one exists in the ready queue) must be

selected for execution. There is a choice, however, for situations 2 and 3.

When scheduling takes place only under circumstances 1 and 4, we say that the scheduling scheme is nonpreemptive or

cooperative; otherwise, it is preemptive.

Dispatcher: Another component involved in the CPU-scheduling functions is the dispatcher.

The dispatcher is the module that gives control of the CPU to the process selected by the short-term scheduler. This function

involves the following:

¶ Switching context

¶ Switching to user mode

¶ Jumping to the proper location in the user program to restart that program.

The dispatcher should be as fast as possible, since it is invoked during every process switch. The time it takes for the

dispatcher to stop one process and start another running is known as the dispatch latency.

IACE-Indian Academy Of Competitive Exams IBPS SO PROFESSIONAL KNOWLEDGE

Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 8

SCHEDULING CRITERIA: Many criteria have been suggested for comparing CPU scheduling algorithms. Which

characteristics are used for comparison can make a substantial difference in which algorithm is judged to be best. The

criteria include the following:

(i) CPU utilization: We want to keep the CPU as busy as possible. Conceptually, CPU utilization can range from 0 to 100

percent. In a real system, it should range from 40 percent (for a lightly loaded system) to 90 percent (for a heavily used

system).

(ii) Throughput: If the CPU is busy executing processes, then work is being done. One measure of work is the number of

processes that are completed per time unit, called throughput. For long processes, this rate may be one process per hour; for

short transactions, it may be 10 processes per second.

(iii) Turnaround Time: From the point of view of a particular process, the important criterion is how long it takes to

execute that process. The interval from the time of submission of a process to the time of completion is the turn-around

time. Turnaround time is the sum of the periods spent waiting to get into memory, waiting in the ready queue, executing on

the CPU, and doing I/O.

(iv) Waiting Time: The CPU scheduling algorithm does not affect the amount of time during which a process executes or

does I/O; it affects only the amount of time that a process spends waiting in the ready queue. Waiting time is the sum of the

periods spent waiting in the ready queue.

(v) Response Time: In an interactive system, turn-around time may not be the best criterion. Often, a process can produce

some output fairly early and can continue.

Computing new results while previous results are being output to the user. Thus, another measure is the time from the

submission of a request until the first response is produced. This measure, called response time, is the time it takes to start

responding, not the time it takes to output the response. The turnaround time is generally limited by the speed of the output

device.

SCHEDULING ALGORITHMS: CPU scheduling deals with the problem of deciding which of the processes in the ready

queue is to be allocated the CPU. There are many different CPU scheduling algorithms.

First-Come, First-Served Scheduling: By far the simplest CPU-scheduling algorithm is the first-come, first-served (FCFS)

scheduling algorithm. With this scheme, the process that requests the CPU first is allocated the CPU first. The

implementation of the FCFS policy is easily managed with a FIFO queue. When a process enters the ready queue, its PCB

is linked onto the tail of the queue. When the CPU is free, it is allocated to the process at the head of the queue. The running

process is then removed from the queue. The code for FCFS scheduling is simple to write and understand. The average

waiting time under the FCFS policy, however, is often quite long. Consider the following set of processes that arrive at time

0, with the length of the CPU burst given in milliseconds:
 Process Burst Time

 P1 24

 P2 3

 P3 3

If the processes arrive in the order P1, P2, P3, and are served in FCFS order, we get the result shown in the following Gantt

chart:

 Figure: Gantt Chart

The waiting time is 0 milliseconds for process P1, 24 milliseconds for process

P2, and 27 milliseconds for process P3. Thus, the average waiting time is (0 + 24 + 27) / 3 = 17 milliseconds. If the processes

arrive in the order P2, P3, P1, however, the results will be as shown in the following Gantt chart:

0

p1 p2 p3

24 27 30

p2 p3 p1

0 3 6 30

IACE-Indian Academy Of Competitive Exams IBPS SO PROFESSIONAL KNOWLEDGE

Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 9

The average waiting time is now (6 + 0 + 3) / 3 = 3 milliseconds. This reduction is substantial. Thus, the average waiting

time under an FCFS policy is generally not minimal and may vary substantially if the process‟s CPU burst times vary

greatly.

Shortest-Job-First Scheduling: A different approach to CPU scheduling is the shortest-job-first (SJF) scheduling

algorithm. This algorithm associates with each process the length of the process‟s next CPU burst. When the CPU is

available, it is assigned to the process that has the smallest next CPU burst. If the next CPU bursts of two processes are the

same, FCFS scheduling is used to break the tie. Note that a more appropriate term for this scheduling method would be the

shortest-next-CPU –burst algorithm, because scheduling depends on the length of the next CPU burst of a process, rather

than its total length. We use the term SJF because most people and textbooks use this term to refer to this type of

scheduling.

As an example SJF scheduling, consider the following set of processes, with the length of the CPU burst given in

milliseconds:
 Process Burst Time

 P1 6

 P2 8

 P3 7

 P4 3

Using SJF scheduling, we would schedule these processes according to the following Gantt Chart:

 Figure: Shortest-Job-First Scheduling

The waiting time is 3 milliseconds for process P1, 16 milliseconds for process P2, 9 milliseconds Process P3, and 0

milliseconds for process P4. Thus, the average waiting time is (3 + 16 + 9 + 0) /4 = 7 milliseconds. By comparison, if we

were using the FCFS scheduling scheme, the average waiting would be 10.25 milliseconds.

The SJF scheduling algorithm is provably optimal, in that it gives the minimum average waiting time for a given set of

processes. Moving a short process before long one decrease the waiting time of the short process more than it increases the

waiting time of the long process. Consequently, the average waiting time decreases.

 Process Arrival Time Burst Time

 P1 0 8

 P2 1 4

 P3 2 9

 P4 3 5

As an example, consider the following four processes, with the length of the CPU burst given in milliseconds.

If the processes arrive at the ready queue at the times shown and need the indicated burst times, then the resulting

preemptive SJF schedule is as depicted in the following Gantt chart:

Process P1 is started at time 0, since it is the only process in the queue. Process P2 arrives at time 1. The remaining time for

process P1(7 milliseconds) is larger than the time required by process P2 (4 milliseconds), so process P1 is preempted, and

process P2 is scheduled. The average waiting time for this example is ((10 – 1) + (1 – 1) + (17 – 2) + (5 – 3)) / 4 = 26/4 =

6.5 milliseconds. Nonpreemptive SJF scheduling would result in an average waiting time of 7.75 milliseconds.

Priority Scheduling: The SJF algorithm is a special case of the general priority scheduling algorithm. A priority is

associated with each process, and the CPU is allocated to the process with the highest priority. Equal – priority processes

are scheduled in FCFS order. An SJF algorithm is simply a priority algorithm where the priority (p) is the inverse of the

(predicted) next CPU burst. The larger the CPU burst, the lower the priority, and vice versa.

Note that we discuss scheduling in terms of high priority and low priority. Priorities are generally indicated by some fixed

range of numbers, such as 0 to 7 or 0 to 4,095. However, there is no general agreement on whether 0 is the highest or lowest

priority. Some systems use low numbers to represent low priority; others use low numbers for high priority. This difference

can lead to confusion. In this text, we assume that low numbers represent high priority.

As an example, consider the following set of processes, assumed to have arrived at time 0, in the order P1, P2, a _ _, P5, with

the length of the CPU burst given in milliseconds:

0

p1 p3 p2

3 16 24

p4

9

0

p2 p4 p3

1 10 24

p1

 5

p1

17

IACE-Indian Academy Of Competitive Exams IBPS SO PROFESSIONAL KNOWLEDGE

Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 10

Process Burst Time Priority

 P1 10 3

 P2 1 1

 P3 2 4

 P4 1 5

 P5 5 2

Using priority scheduling, we would schedule these processes according to the following Gantt chart:

 Figure: Priority Scheduling

The average waiting time is 8.2 milliseconds.

Priorities can be defined either internally or externally, Internally defined priorities use some measurable

quantity or quantities to compute the priority of a process. For example, time limits, memory requirements, the number of

open files, and the ratio of average I/O burst to average CPU burst have been used in computing priorities. External

priorities are set by criteria outside the operating system, such as the importance of the process, the type and amount of

funds being paid for computer use, the department sponsoring the work, and other, often political, factors.

Round-Robin Scheduling: The round-robin (RR) scheduling algorithm is designed especially for timesharing systems. It is

similar to FCFS scheduling, but preemption is added to switch between processes. A small unit of time, called a time

quantum or time slice, is defined. A time quantum is generally from 10 to 100 milliseconds. The ready queue is treated as a

circular queue. The CPU scheduler goes around the ready queue, allocating the CPU to each process for a time interval of

up to 1 time quantum.

To implement RR scheduling, we keep the ready queue as a FIFO queue of processes. New processes are added to the tail

of the ready queue. The CPU scheduler picks the first process from the ready queue, sets a timer to interrupt after 1 time

quantum, and dispatches the process.

One of two things will then happen. The process may have a CPU burst of less than 1 time quantum. In this case, the

process itself will release the CPU voluntarily. The Scheduler will then proceed to the next process in the ready queue.

Otherwise, if the CPU burst of the currently running process is longer than 1 time quantum, the timer will go off and will

cause an interrupt to the operating system. A context switch will be executed, and the process will be put at the tail of the

ready queue. The CPU scheduler will then select the next process in the ready queue.

The average waiting time under the RR policy is often long. Consider the following set of processes that arrive at time 0,

with the length of the CPU burst given in milliseconds:

 Process Burst Time

 P1 24

 P2 3

 P3 3

If we use a time quantum of 4 milliseconds, then process P1 gets the first 4 milliseconds. Since it requires another 20

milliseconds, it is preempted after the first time quantum, and the CPU is given to the next process in the queue, process P2.

Since process P2 does not need 4 milliseconds, it quits before its time quantum expires. The CPU is the given to the next

process, process P3. Once each process has received 1 time quantum, the CPU is returned to process P1 for an additional

time quantum. The resulting RR Schedule is

The average waiting time is 17/3 = 5.66 milliseconds.

 Figure: Round-Robin Scheduling

In the RR scheduling algorithm, no process is allocated the CPU for more than 1 time quantum in a row (unless it is the

only runable process) If a process‟s CPU burst exceeds 1 time quantum, that process is preempted and is put back in the

ready queue. The RR Scheduling algorithm is thus preemptive.

If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the CPU time in chunks

of at most q time units. Each process must wait no longer than (n - 1) × q time units until its next time quantum. For

example, with five processes and a time quantum of 20 milliseconds, each process will get up to 20 milliseconds every 100

milliseconds.

0

p5 p1 p4

1 16 19

p1

6 18

p3

P2 P1 P1

4 18 30

P1

10 26

P1 P3 P1 P1

0 7 14 22

IACE-Indian Academy Of Competitive Exams IBPS SO PROFESSIONAL KNOWLEDGE

Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 11

MULTIPLE-PROCESSOR SCHEDULING: Our discussion thus far has focused on the problems of scheduling the CPU

in a system with a single processor. If multiple CPUs are available, load sharing becomes possible; however; the scheduling

problem becomes correspondingly more complex. Many possibilities have been tried; and as we saw with single processor

CPU scheduling, there is no one best solution. Here, we discuss several concerns in multiprocessor scheduling. We

concentrate on systems in which the processors are identical-homogeneous-in terms of their functionality; we can then use

any available processor to run any process ill the queue. (Note, however, that even with homogeneous multiprocessors,

there are sometimes limitations on scheduling. Consider a system with an I/O device attached to a private bus of one

processor. Processes that wish to use that device must be scheduled to run on that processor.)

Approaches to Multiple-Processor Scheduling: One approach to CPU scheduling in a multiprocessor system has all

scheduling decisions, I/O processing, and other system activities handled by a single processor – the master server. The

other processors execute only user code. This asymmetric multiprocessing is simple because only one processor accesses

the system data structures, reducing the need for data sharing.

A second approach uses symmetric multiprocessing (SMP), where each processor is self-scheduling. All processes may be

in a common ready queue, or each processor may have its own private queue of ready processes. Regardless, scheduling

proceeds by having the scheduler for each processor examine the ready queue and select a process to execute. If we have

multiple processors trying to access and update a common data structure, the scheduler must be programmed carefully; We

must ensure that two processors do not choose the same process and that processes are n6t lost from the queue. Virtually all

modern operating systems support SMP, including Windows XP, Window 2000, Solaris, Linux, and Mac OS X.

In the remainder of this section, we will discuss issues concerning SMP systems.

REAL TIME CPU SCHEDULING: Our coverage of scheduling so far has focused primarily on soft real-time systems.

As mentioned, though, scheduling for such systems provides no guarantee on when a critical process will be scheduled; it

guarantees only that the process will be given preference over noncritical processes. Hard real-time systems have stricter

requirements. A task must be serviced by its deadline: service after the deadline has expired is the same as no service at all.

We now consider scheduling for hard real –time systems. Before we proceed with the details of the individual schedulers,

however, we must define certain characteristics of the processes that are to be scheduled. First, the processes are considered

periodic. That is, they require the CPU at constant intervals (periods). Each periodic process has a fixed processing time t

once it acquires thye CPU, a deadline d when it must be serviced by the CPU, and a period p. The relationship of the

processing time, the deadline, and the period can be expressed as 0 d” t d” d d” p. The rate of a periodic task is 1/p.

Schedulers can take advantage of this relationship and assign priorities according to the deadline or rate requirements of a

periodic process.

 Figure: Periodic Task

What is unusual about this form of scheduling is that a process may have to announce its deadline requirements to the

scheduler. Then, using a technique known as an admission-control algorithm, the scheduler either admits the process,

guaranteeing that the process will complete on time, or rejects the request as impossible if it cannot guarantee that the task

will be serviced by its deadline.

In the following sections, we explore scheduling algorithms that address the deadline requirements of hard real-time

systems.

PROCESS SCHEDULING: The objective of multiprogramming is to have some process running at all times, to maximize

CPU utilization. The objective of time sharing is to switch the CPU among processes so frequently that users can interact

with each program while it is running. To meet these objectives, the process scheduler selects an available process (possibly

from a set of several available processes) for program execution on the CPU. For a single-processor system, there will never

Time

d d d

t t t

p p p

Period1 Period2 Period1

IACE-Indian Academy Of Competitive Exams IBPS SO PROFESSIONAL KNOWLEDGE

Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 12

be more than one running process. If there are more processes, the rest will have to wait until the CPU is free and can be

rescheduled.

SCHEDULING QUEUES: As processes enter the system, they are put into a job queue, which consists of all processes in

the system. The processes that are residing in main memory and are ready and waiting to execute are kept on a list called the

ready queue. This queue is generally stored as a linked list. A ready-queue header contains pointers to the first and final

PCBs in the list. Each PCB includes a pointer field that points to the next PCB in the ready queue. The system also includes

other queues. When a process is allocated the CPU, it executes for a while and eventually quits, is interrupted, or waits for

the occurrence of a particular event, such as the completion of an I/O request.

Schedulers: A process migrates among the various scheduling queues throughout its lifetime.

The operating system must select, for scheduling purposes, processes from these queues in some fashion. The selection

process is carried out by the appropriate scheduler.

Often, in a batch system, more processes are submitted than can be executed immediately. These processes are spooled to a

mass-storage device (typically a disk), where they are kept for later execution. The long-term scheduler, or job scheduler,

selects processes from this pool and loads them into memory for execution. The short-term scheduler, or CPU scheduler,

selects from among the processes that are ready to execute and allocates the CPU to one of them.

Figure: Queeuing Representation of Process Scheduling

OPERATION ON PROCESSES: The processes in most systems can execute concurrently, and they may be created and

deleted dynamically. Thus, these systems must provide a mechanism for process creation and termination. We explore the

mechanisms involved in creating processes and illustrate process creation on UNIX and windows systems.

Process Creation: A process may create several new processes, via a create – process system call, during the course of

execution. The creating process is called a parent process, and the new processes are called the children of that process.

Each of these new processes may in turn create other processes, forming a tree of processes.

Most operating systems (including UNIX and the Windows family of operating systems) identify processes according to a

unique process identifier (or pid), which is typically an integer number. Example illustrates a typical process tree for the

Solaris operating system, showing the name of each process and its pid. In Solaris, the process at the top of the tree is the

sched process, with pid of 0. The sched process creates several children processes-including pageout and fsflush. These

processes are responsible for managing memory and file systems. The sched process also creates the init process, which

serves as the root parent process for all user processes. We see two children of init-inetd and dtlogin. Inetd is responsible for

networking services such as telnet and ftp; dtlogin is the process representing a user login screen. When a user logs in,

dtlogin creates an X-windows session (Xsession), which in turns creates the sdt-shel process. Below sdt-shel, a user‟s

command-line shell – the C-shell or csh – is created. It is this command line interface where the user then works invokes

various child processes, such as the 1s and cat commands. We also see a csh process with pid of 7778 representing a user

Ready queue

 I/O queue I/O request

Time slice
expired

 Fork a child

Wait for an
interrupt

I/O

Child
Executes

Interrupt
occurs

CPU

IACE-Indian Academy Of Competitive Exams IBPS SO PROFESSIONAL KNOWLEDGE

Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 13

who has logged on to the system using telnet. This user has started the Netscape browser (pid of 7785) and the emacs editor

(pid of 8105).

 Figure: Tree of Processes on a Typical Solaris System

Process Termination: A process when it finishes executing its final statement and asks the operating system to delete it by

using the exit () system call. At that point, the process may return a status value (typically an integer) to its parent process

(via the wait () system call). All the resources of the process – including physical and virtual memory, open files, and I/O

buffers are deallocated by the operating system.

Termination can occur in other circumstances as well. A process can cause the termination of another process via an

appropriate system call (for example, Terminate Process () in win32). Usually, such a system call can be invoked only by

the parent of the process that is to be terminated. Otherwise, users could arbitrarily kill each other‟s jobs. Note that a parent

needs to know the identities of its children. Thus, when one process creates a new process, the identity of the newly created

process is passed to the parent.

A parent may terminate the execution of one of its children for a variety of reasons, such as these:

¶ The child has exceeded its usage of some of the resources that it has been allocated. (To determine whether this

has occurred, the parent must have a mechanism to inspect the state of its children.)

¶ The task assigned to the child is no longer required.

¶ The parent is exiting, and the operating system does not allow a child to continue if its parent terminates.

INTERPROCESS COMMUNICATION: Processes executing concurrently in the operating system may be either

independent processes or cooperating processes. A process is independent if it cannot affect or be affected by the other

processes executing in the system. Any process that does not share data with any other process is independent. A process is

cooperating if it can affect or be affected by the other processes executing in the system. Clearly, any process that shares

data with other processes is a cooperating process.

There are several reasons for providing an environment that allows process cooperation.

Sched
pid = 0

 init
 pid = 1

 pageout
 pid = 2

 fsflush
 pid = 3

 inetd
pid = 140

 dtlogin
 pid = 251

tetnetdaemon
 pid = 7776

 Xsession
 pid = 294

 Csh
 pid = 7778

 sdt_shel
 pid = 340

 Netscape
 pid = 7785

 emacs
pid = 8105

 csh
 pid = 2123

 cat
pid = 2536

 Csh
 pid = 1400

IACE-Indian Academy Of Competitive Exams IBPS SO PROFESSIONAL KNOWLEDGE

Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 14

Information sharing: Since several users may be interested in the same piece of information (for instance, a shared file),

we must provide an environment to allow concurrent access to such information.

Computation Speedup: If we want a particular task to run faster, we must break it into subtasks, each of which will be

executing in parallel with the others. Notice that such a speedup can be achieved only if the computer has multiple

processing elements (such as CPUs or I/O channels).

Modularity: We may want to construct the system in a modular fashion, dividing the system functions into separate

processes or threads.

Convenience: Even an individual user may work on many tasks at the same time. For instance, a user may be editing,

printing, and compiling in parallel.

Cooperating processes require an interprocess communication (IPC) mechanism that will allow them to exchanged data

and information. There are two fundamental models of interprocess communication: (1) Shared memory and (2) message

passing. In the shared-memory model, a region of memory that is shared by cooperating processes is established. Processes

can then exchange information by reading and writing data to the shared region. In the message passing model,

communication takes place by means of messages exchanged between the cooperating processes.

Both of the models just discussed are3 common in operating systems implement both. Message passing is useful for

exchanging smaller amounts of data, because no conflicts need be avoided. Message passing is also easier to implement

than is shared memory for intercomputer communication. Shared memory allows maximum speed and convenience of

communication, as it can be done at memory speeds when within a computer. Shared memory is faster than message

passing, as message-passing systems are typically implemented using system calls and thus require only to establish shared-

memory regions. Once shared memory is established, all accesses are treated as routine memory accesses, and no assistance

from the kernel is required.

 (a) (b)

 Figure: Communication Models (a) Message Passing (b) Shared Memory

THREAD PROCESS: A thread is a basic unit of CPU utilization: it comprises a thread ID, a program Counter, a register

set, and a stack. It shares with other threads belonging to the same process its code section, data section, and other operating

system resources, such as open files and signals. A traditional (or heavyweight) process has a single thread of control. If a

process has multiple threads of control. It can perform more than one task at a time. The difference between a traditional

single-threaded process and a multithreaded process

Motivation: Many software packages that run on modern desktop PCs are multithreaded. An application typically is

implemented as a separate process with several threads of control. A web browser might have one thread display images or

text while another thread retrieves data from the network, for example. A word processor may have a thread for displaying

graphics, another thread for responding to keystrokes from the user and a third thread for performing spelling and grammar

checking in the background.

M

M

M

Process A

Process B

Kernel

Process A

Process B

Shared

Kernel

2

1

1

2

IACE-Indian Academy Of Competitive Exams IBPS SO PROFESSIONAL KNOWLEDGE

Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 15

 Single-threaded process Multithreaded process

 Figure: Single-threaded process and Multithreaded process

In a certain situations, a single application may be required to perform several tasks. For example, a web server accepts

client requests for web pages, images, sound, and so forth. A busy web server may have several (perhaps thousands) of

clients concurrently accessing it. If the web server ran as a traditional single threaded process, it would be able to service

only client at a time. The amount of time that a client might have to wait for its request to be serviced could be enormous.

One solution is to have the server run as a single process that accepts requests. When the server receives a request, it creates

a separate process to service that request. In fact, this process-creation method was in common use before threads became

popular. Process creation is time consuming and resource intensive, as was shown in the previous chapter. If the new

process will perform the same tasks as the existing process, why incur all that overhead? It is generally more efficient to use

one process that contains multiple threads. This approach would multithread the web-server process. The server would

create a separate thread that would listen for client requests; when a request was made, rather than creating another process,

the server would create another thread to service the request.

Threads also play a vital role in remote procedure call (RPC) systems. RPCs allow interprocess communication by

providing a communication mechanism similar to ordinary function or procedure calls. Typically, RPC servers are

multithreaded. When a server receives a message, it services the message using a separate thread. This allows the server to

service several concurrent requests. Java‟s RMI systems work similarly. Finally, many operating system kernels are now

multithreaded; several threads operate in the kernel, and each thread performs a specific task, such as managing devices or

interrupt handling. For example, Solaris creates a set of threads in the kernel specifically for interrupt handling; Linux uses

a kernel thread for managing the amount of free memory in the system.

CRITICAL-SECTION PROBLEM: Consider a system consisting of n processes {P0, P1,……….,P,n-1). Each process has a

segment of code, called a critical section, in which the process may be changing common variables, updating a table,

writing a file, and so on. The important feature of the system is that, when one process is executing in its critical section, no

other process is to be allowed to execute in its critical section. That is, no two processes are executing in their critical

sections at the same time. The critical section problem is to design a protocol that the processes can use to cooperate. Each

process must request permission to enter its critical section. The section of code implementing this request is the entry

section. The critical section may be followed by an exit section. The remaining code is the remainder section.

A solution to the critical section problem must satisfy the following three requirements:

1. Mutual Exclusion: If process Pi is executing in its critical section, then no other processes can be executing in their

critical sections.

2. Progress: If no process is executing in its critical section and some processes wish to enter their critical sections, then

only those processes that are not executing in their remainder sections can participate in the decision on which will enter its

critical section next, and this selection cannot be postponed indefinitely.

3. Bounded waiting: There exists a bound, or limit, on the number of times that other processes are allowed to enter their

critical sections after a process has made a request to enter its critical section and before that request is granted.

Code Data Files

Registers Stack

Thread

Code Data Files

Registers Registers Registers

Stack Stack Stack

Thread

IACE-Indian Academy Of Competitive Exams IBPS SO PROFESSIONAL KNOWLEDGE

Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 16

SEMAPHORES: The various hardware-based solutions o the critical-section problem (using the test AndSet () and Swap

() instructions) are complicated for application programmers to use. To overcome this difficulty, we can use a

synchronization tool called a semaphore.

A semaphore S is an integer variable that, apart from initialization, is accessed only through two standard atomic operations:

wait () and signal (). The wait () operation was originally termed P (from the Dutch proberen”, to test”); signal () was

originally called V (from verhogen, “to increment”). The definition of wait () is as follows:

 Wait (S) {

 While S < = 0

 ; / / no-op

 S - - ;

 }

The definition of signal () is as follows:

 signal (S) {

 S + +;

 }

All the modifications to the integer value of the semaphore in the wait (1 and signal 10 operations must be executed

indivisibly. That is, when one process modifies the semaphore value, no other process can simultaneously modify that same

semaphore value. In addition, in the case of wait (S), the testing of the integer value of S (S d” O), and its possible

modification (S_), must also be executed without interruption.

CLASSIC PROBLEMS OF SYNCHRONIZATION:

We present a number of synchronization problems as examples of a large class of concurrently control problems. These

problems are used for testing nearly every newly proposed synchronization scheme. In our solutions to the problems, we use

semaphores for synchronization.

The Bounded-Buffer Problem: We present here general structure of this scheme without committing ourselves to any

particular implementation.

We assume that the pool consists of n buffers, each capable of holding one item. The mutex semaphore provides mutual

exclusion for accesses to the buffer pool and is initialized to the value 1. The empty and full semaphores count the number

of empty and full buffers. The semaphore empty is initialized to the value n; the semaphore full is initialized to the value 0.

DEADLOCK CHARACTERISATION: In a deadlock, processes never finish executing, and system resources are tied

up, preventing other jobs from starting. Before we discuss the various methods for dealing with the deadlock problem, we

look more closely at features that characteristics deadlocks.

Necessary Conditions:
A deadlock situation can arise if the following four conditions hold simultaneously in a system:

1. Mutual exclusion. At least one resource must be held in a non-sharable mode; that is, only one process at a time can use

the resource. If another process requests that resource, the requesting process must be delayed until the resource has been

released.

2. Hold and wait. A process must be holding at least one resource and waiting to acquire additional resources that are

currently being held by other processes.

3. No preemption: Resources cannot be preempted; that is, a resource can be released only voluntarily by the process

holding it, after that process has completed its task.

4. Circular wait: A set {P0, P1, …….., Pn,) of waiting processes must exist such that P0, is waiting for a resource held by P1,

P1 is waiting for a resource held P2, ….., Pn-1s waiting for a resource held by Pn, and Pn is waiting for a resource held by P0.

RESOURCE- ALLOCATION GRAPH: Deadlocks can be described more precisely in terms of a directed graph called a

system resource allocation graph. This graph consists of a set of vertices V and a set of edges E. The set of vertices V is

partitioned into two different types of nodes: P ={P1, P2, ……., Pn, the set consisting of all the active processes in the

system, and R ={R1, R2, …., Rm,), the set consisting of all resource types in the system.

A directed edge from process Pi to resource type R, is denoted by P1 + Rj; it signifies that process P, lids requested an

instance of resource type R, and is currently waiting for that resource. A directed edge from resource type Rj to process Pi is

denoted by R, P1; it signifies that an instance of resource type Rj has been allocated to process Pi. A directed edge Pi R, is

called a request edge; a directed edge Rj P, is called an assignment edge.

Pictorially, we represent each process Pi as a circle and each resource type R, as a rectangle. Since resource type Rj may

have more than one instance, we, represent each such instance as a dot within the rectangle. Note that a request edge points

to only the rectangle Rj, whereas an assignment edge must also designate one of the dots in the rectangle.

When process Pi requests an instance of resource type R, a request edge is inserted in the resource allocation graph. When

this request can be fulfilled, the request edge is instantaneously transformed to an assignment edge. When the process no

longer needs access to the resource, it releases the resource; as a result, the assignment edge is deleted.

IACE-Indian Academy Of Competitive Exams IBPS SO PROFESSIONAL KNOWLEDGE

Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 17

Figures: Resource Allocation Graph
METHODS FOR HANDLING DEADLOCKS:

Generally speaking, we can deal with the deadlock problem in one of three ways:

1. We can use a protocol to prevent or avoid deadlocks, ensuring that the system will never enter a deadlock state.

2. We can allow the system to enter a deadlock state, detect it, and recover.

3. We can ignore the problem altogether and pretend that deadlocks never occur in the system.

The third solution the one used by most operating systems, including UNTS and windows; it is then up to the application

developer to write programs that handle deadlocks.

Next, we elaborate briefly on each of the three methods for handling deadlocks. However, before proceeding, we should mention

that some researchers have argued that none of the basic approaches alone is appropriate for the entire spectrum of resource

allocation problems in operating systems. The basic approaches can be combined, however, allowing us to select an optimal

approach each class or resources in a system.

To ensure that deadlocks never occur, the system can use either a deadlock prevention or a deadlock avoidance scheme. Deadlock

prevention provides a set of methods for ensuring that at least one of the necessary conditions cannot hold. These methods

prevent deadlocks by constraining how requests for resources can be made.

Deadlock avoidance requires that the operating system be given in advance additional information concerning which resources a

process will request and use during its lifetime. With this additional knowledge, it can decide for each request whether or not the

process should wait. To decide whether the current request can be satisfied or must be delayed, the system must consider the

resources currently available, the resources currently allocated to each process, and the future requests and releases each process.

DEADLOCK PREVENTION: When deadlock occur, each of the four necessary conditions must hold. By ensuring that at least

one of these conditions cannot hold, we can prevent the occurrence of a deadlock. We elaborate on this approach by examining

each of the four necessary conditions separately.

Mutual Exclusion: The mutual-exclusion condition must hold for non-sharable resources. For example, printer cannot be

simultaneously shared by several processes. Sharable resources, in contrast, do not require mutually exclusive access and thus

cannot be involved in a deadlock. Read-only files are a good example of a sharable resource. If several processes attempt to open

a read-only file at the same time, they can be granted simultaneous access to the file. A process never4 needs to wait for a sharable

resource. In general, however, we cannot prevent deadlocks by denying the mutual-exclusion condition, because some resources

are intrinsically non-sharable.

Hold and Wait: To ensure that the hold-and-wait condition never occurs in the system, we must guarantee that, whenever a

process requests a resource, it does not hold any other resources. One protocol that can be used requires each process to request

and be allocated all its resources before it begins execution. We can implement this provision by requiring that system calls

requesting resources for a process precede all other system calls.

All alternative protocol allows a process to request resources only when it has none. A process may request some resources and

use them. Before it can request any additional resources, however, it must release all the resources that it is currently allocated.

Circular Wait: The fourth and final condition for deadlocks is the circular-wait condition. One way to ensure that this condition

never holds is to impose a total ordering of all resource types and to require that each process requests resources in an increasing

order of enumeration.

To illustrate, we let R ={R1, R2, ……., R,,,} be the set of resource types. we assign to each resource type a unique integer number,

which allows us to compare two resources and to determine whether one precedes another in our ordering. Formally, we define a

one-to-one function F: R -> N, where N is the set of natural numbers. For example, if the set of resource types R includes tape

drives, disk drive, and printers, theta the function F might be defined as follows:

∙ ∙

P1

P2
P3

∙
∙ ∙

∙

∙
R2

R4

R1 R3

IACE-Indian Academy Of Competitive Exams IBPS SO PROFESSIONAL KNOWLEDGE

Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 18

 F (tap drive) = 1 F (disk drive) =5 F (printer) = 12

We can now consider the following protocol to prevent deadlocks: Each process can request resources only in an increasing order

of enumeration. That is, a process can initially request any number of instances of resource type say, R,. After that the process can

request instances of resource type R, if and only if F(R,)> F(R,). If several instances of the same resource type are needed, a single

request for all of them must be issued. For example, sing the function defined previously, a process that wants to use the tape drive

and printer at the same time must first request the tape drive and then request the printer. Alternatively, we can require that, where

process requests an instance of resource type Rj, it has released any resources R, such that F (Ri) e” F (Rj).

 If these two protocols are used, then the circular wait condition cannot hold. We can demonstrate this fact by assuming that a

circular wait exists (proof by contradiction). Let the set of process involved in the circular wait be (P0, P1…..Pn), where Pi is

waiting for a resource R1, which is held by process Pi + 1. (Modulo arithmetic is used on the indexes, so that Pn is waiting for a

resource R, held by P0,.) Then, since process Pi+1 is holding resource R, while requesting resource Ri+1, we must have F (Ri) <

F(Ri+1), for all i. But this condition means that F(R0) < F(R1) < …..<F(Rn) F(R0). By transitivity, F(R0) < F(R0), which is

impossible. Therefore, there can be no circular wait.

DEADLOCK AVOIDANCE

 The restraints ensure that at least one of the necessary conditions for deadlock cannot occur and, hence that deadlocks

cannot hold. Possible side effects of preventing deadlocks by this method, however, are low device utilization and reduced system

throughput.

 An alternative method for avoiding deadlocks is to require additional information about how resources are to be

requested. For example, in a system with one tape drive and one printer, the system might need to know that process P will request

first the tape drive and then the printer before releasing both resources, whereas process Q will request first the printer and then

the tape drive. With this knowledge of the completer sequence of requests and releases for each process, the system can decide for

each requests whether or not the process should wait in order to avoid a possible future deadlock. Each request requires that in

making this decision the system consider the resources currently available, the resources currently allocated to each process, and

the future requests and releases each process.

 The various algorithms that use the approach differ in the amount and type of information required. The simplest and

most useful model requests that each process declare the maximum number of resources of each type that it may need. Given this

a priori information, it is possible to construct an algorithm that ensures that the system will never enter a deadlocked state. Such

an algorithm defines the deadlock – avoidance approach. A deadlock – avoidance algorithm dynamically examines the resource –

allocation state to ensure that a circular wait condition can never exist. The resource – allocation state is defined by the number of

available and allocated resources and the maximum demands of the process.

DEADLOCK DETECION

 If a system does not employ either a deadlock – prevention a deadlock avoidance algorithm, then a dead lock situation

may occur. In this environment, the system must provide:

¶ An algorithm that examines the state of the system to determine whether a deadlock has occurred

¶ All algorithm to recover from the deadlock

Single Instance of Each Resource Type:

 If all resources have only a single instance, then we can define a deadlock detection algorithm that uses a variant of the

resources allocation graph, called a wait – for graph. We obtain this graph from the resource nodes and collapsing the appropriate

edges.

 (a) Resource allocation graph (b) Corresponding wait for graph

P2 P3

R1 R3 R4

P6

P1

R2

R4

R5

P2

P1

P4

P5

P3
P2

IACE-Indian Academy Of Competitive Exams IBPS SO PROFESSIONAL KNOWLEDGE

Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 19

More precisely, an edge from Pi to Pj , in a wait-for graph implies that process Pi , is waiting for process P, to release a

resource that Pi , needs. An edge

 Pi P, exists in a wait-for graph in and only if the corresponding resource allocation graph contains two edges Pi + Rq

and Rq P, for some resource Rq.

 A deadlock exists in the system if and only if the wait-for graph contains a cycle. To detect deadlocks, the system

needs to maintain the wait-for graph and periodically invoke algorithm that searches for a cycle in the graph. An algorithm

to detect a cycle in a graph requires an order of n‟ operations, where n is the number of vertices in the graph.

Several Instances of a Resource Type

 The wait-fro graph scheme is not applicable to a resource-allocation system with multiple instances of each

resource type. We turn now to deadlock detection Algorithm that is applicable to such a system.

Available: A vector of length m indices the number of available resources of each type.

Allocation: An n 𝑥 m matrix defines the number of resources of each type currently allocated to each process

Request: An n 𝑥 m matrix indicates the current request of each process. If request [i][j] equals k, then process Pi ,

is requesting k more instances of resource type R.

Detecting-Algorithm Usage

 When should we invoke the detection algorithm? The answer depends on two factors.

 1. How often is a deadlock likely to occur?

 2. How many processes will be affected by deadlock when it happens?

 If deadlocks occur frequently, then the detection algorithm should he invoked frequently. Resources allocated to

deadlocked processes will be idle until the deadlock can be broken. In addition, the number of processes involved in the

deadlock cycle may grow. Deadlocks occur when some process makes a request that cannot be granted immediately. This

request may be the final request that completes a chain of waiting processes. In the extreme, we can invoke the deadlock

detection algorithm every time a request for allocation cannot be granted immediately. In this case, we can identify not only

the deadlocked set of processes but also the specific process that “caused” the deadlock. (In reality, each of the deadlocked

processes is a link in the cycle in the resource graph, so all the of them, jointly, caused the deadlock.) If there are many

different resource types, one request “caused” by the one identifiable process.

RECOVERY FROM DEADLOCK

 When a detection algorithm determines that a deadlock exists, several alternatives are available. One possibility is

to inform the operator that a deadlock has occurred and to let the operator deal with the deadlock manually. Another

possibility is to let the system recover from the deadlock automatically There are Two options for breaking a deadlock. One

is simply to abort one or more processes to break the circular wait. The other is to be preempt some resources from one or

more of the deadlocked processes.

Process Termination

 To eliminate deadlocks by aborting a process, we use one of two methods. In both methods, the system reclaims all

resources allocated to the terminated processes.

¶ Abort all deadlocked processes: This method clearly will break the deadlock cycle, but at great expense; the

deadlocked processes may have computed for a long time, and the results of these partial computations must be

discarded and probably will have to be recomputed.

¶ Abort one process at a time until the deadlock cycle is eliminated: This method incurs considerable overhead, since,

after each process is aborted, a deadlock – detection algorithm must be invoked to determine whether any processes

are still deadlocked.

Resource Preemption

 To eliminate deadlocks using resource preemption, we successfully preempt some resources from processes and

give these resources to other processes until the deadlock circle is broken.

 If preemption is required to deal with deadlocks, then three issues need to be addressed:

1. Selecting a victim. Which resources and which processes are to be preempted? As in process termination, we must

determine the order of preemption to minimize cost. Cost factors may include such parameters as the number of resources a

deadlocked process has thus far consumed during execution.

2. Rollback. If we preempt a resource from a process, what should be done with that process? Clearly, it cannot continue

with its normal execution; it is missing some needed resource. We must roll back the process to some safe state and restart it

from that state. Since, in general, it is difficult to determine what a safe state is; the simplest solution is a total rollback:

Abort the process and then restart it. Although it is more effective to rollback the process only as far as necessary to break

the deadlock, this method requires the system to keep more information about the state of all running processes.

IACE-Indian Academy Of Competitive Exams IBPS SO PROFESSIONAL KNOWLEDGE

Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 20

3. Starvation. How do we ensure that starvation will not occur? That is, how can we guarantee that resources will not always

be preempted from the same process?

In a system where victim selection is based primarily on cost factors, it may happen that the same process is always picked

as a victim. As a result, this process never completes its designated task, a starvation situation that must be dealt with in any

practical system. Clearly, we must ensure that a process can be picked as a victim only a (small) finite number of times. The

most common solution is to include the number of rollbacks in the cost factor.

LOGICAL VERSUS PHYSICAL ADDRESS SPACE
 An address generated by the CPU is commonly referred to as a logical address, whereas an address seen by the

memory unit – that is, the one loaded into the memory – address register of the memory – is commonly referred to as a

physical address.

 The compile – time and load time address – binding methods generate identical logical and physical address.

However; the execution – time addresses binding scheme results in differing logical and physical addresses. In this case, we

usually refer to the logical address as a virtual address. We use logical address and virtual address interchangeably in this

text. The set of all logical addresses generated by a program is a logical address space; the set of all physical addresses

corresponding to these logical addresses is a physical address space. Thus, in the execution – time – address – binding

scheme, the logical addresses is a physical address spaces differ. The run – time mapping from virtual to physical addresses

is done by a hardware device called from many different methods to accomplish such mapping.

The base register is now called a relocation register. The value in relocation register is added to every address generated by

a user process at the time it is sent to memory for example, if the base is at 14000, then an attempt by the user to address

location 0 is dynamically relocated to location 14000; an access to location 346 is mapped to location 14346. The MS –

DOS operating system running on the Intel 80 × 86

Families of processors uses four relocation registers when loading and running processes.

 The user program never sees the real physical addresses. The program can create a pointer to location 346, store it

in memory, manipulate it, and compare it with other addresses – all as the number 346. Only when it is used as memory

address (in an indirect load or store, perhaps) is it relocated relative to the base register. The user program deals with logical

addresses. The memory – mapping hardware converts logical addresses into physical addresses. The final location of a

referenced memory address is not determined until the reference is made. We now have two different types of addresses:

logical addresses (in the range 0 to max) d physical addresses (in the range R+ 0 to R + max f or a base value R). The user

generates only logical addresses and thinks that the process runs in locations 0 to max. The user program supplies logical

addresses; these logical addresses must be mapped to physical addresses before they are used.

The concept of a logical address space that is bound to a separate physical address spec is central to proper memory

management.

SWAPPING

 A process must be in memory to be executed. A process, however, can be swapped temporarily out of memory to a

backing store and then brought back into memory for continued execution. For example, assume a multiprogramming

environment with a round – robin CPU – scheduling algorithm. When a quantum expires, the memory manager will start to

sway out the process that just finished and to swap another process into the memory space that has been freed. In the mean

time, the CPU scheduler will allocate a time slice to some other process in memory manager can swap processes fast

14000

Relocation
register

+

Physical
Address

14346

Memory

MMU

Logical
address

346

CPU

IACE-Indian Academy Of Competitive Exams IBPS SO PROFESSIONAL KNOWLEDGE

Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 21

enough that some processes will be ill memory, ready to execute, when the CPU scheduler wants to reschedule the CPU. In

addition, the quantum must be large enough to allow reasonable amounts of computing to be done between swaps.

Figure: Swapping of two process using a disk as a backing store

A variant of this swapping policy is used for priority based scheduling algorithms. If a higher – priority process

arrives and wants service, the memory manager can swap out the lower – priority process and then load and execute the

higher – priority process. When t 1 1 e higher – priority process finishes, the lower – priority process can be swapped back

in and continued. This variant of swapping is sometimes called roll out, roll in.

Normally, a process that is swapped out trill be swapped back into the same memory – space it occupied

previously. This restriction is dictated by the method of address binding. If execution – time binding is being used, however,

then a process can be swapped into a different memory space, because the physical addresses are computed during

execution time.

Swapping requires a backing store. The backing store is commonly a fat disk. It must be Barge enough to

accommodate copies of all memory images are on the backing store or in memory and are ready queue consisting of all

processes whose memory images are on the backing store or in memory images are on the backing store or in memory and

are ready to run. Whenever the CPU scheduler decides to execute a process, it calls the dispatcher. The dispatcher checks to

see whether the next process in the queue in memory. If it is not, and if there is no free memory region, the dispatcher swaps

out a process currently in memory and swaps in the desired process. It then reloads registers and transfers control to the

selected process.

CONTIGUOUS MEMORY ALLOCATION

The main memory must accommodate both the operating system and the various user processes. We therefore need

to allocate the parts of the main memory is 1 the most efficient way possible.

The memory is usually divided into two partitions: one for the resident operating system and one for the user

processes. We can place the operating system in either low memory or high memory. The major factor affecting this

decision is the location of the interrupt vector. Since the interrupt vector is often in low memory, programmers usually place

the operating system in low memory a well.

Thus, in this text, we discuss only the situation where the operating system resides in low memory. The

development of the, other situation is similar.

We usually want several user processes to reside in memory at the same time. We therefore need to consider how to

allocate available memory to the processes that are in the input queue waiting to be brought into memory. In this contiguous

memory allocation, each process is contained in a single contiguous section of memory.

PAGING

Paging is a memory – management scheme that permits the physical address space of a process to be non –

continuous. Paging avoids the considerable problem of fitting memory chunks of varying sizes onto the backing store; most

memory – management schemes used before the introduction of paging suffered from this problem. The problem arises

because, when some code fragments or data residing ill main memory need to be swapped out, space must be found on the

backing store. The backing store also has the fragmentation problems discussed in connection with main memory, except

that access is much slower, so compaction is impossible. Because of: its advantages over earlier methods, paging in its

various forms is commonly used in most operating systems.

Process
P1

Process
P2

Swap out

User Space

1

2

Operating
system

Backing store

Main memory

Swap out

IACE-Indian Academy Of Competitive Exams IBPS SO PROFESSIONAL KNOWLEDGE

Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 22

Traditionally, support for paging has been handled by hardware. However, recent designs have implemented paging

by closely integrating the hardware and operating system, especially on 64 – bit microprocessors.

SEGMENTATION

 An important aspect of memory management that became unavoidable with paging is the separation of the user‟s

view of memory and the actual physical memory is not the same as the actual physical memory. As we have already seen,

the user‟s view of memory is not the same as the actual physical memory. This mapping allows differentiation between

logical memory and physical memory.

Basic Method

 Do users think of memory as a linear array of bytes, some containing instructions and other containing data? Most

people would say no. Rathe, users prefer to view memory as a collection of variable – sized segments, with no necessary

ordering among segments.

Consider how you think of a program when you are writing it. You think of it as a main program with a set of methods,

procedures, or functions. It may also include various data structures: objects, arrays, stacks, variables, and so on. Each of

these modules or data elements is referred to by name. you talk about “the stack,” the main library,” the main program,”

without caring what addresses in memory these elements occupy. You are not concerned with whether the stack is stored

before or after the Sqrt. 0, and so on.

Logical Address

F 0000…0000

F 1111…1111

P d f d

f

CPU

Page
table

Logical
address

Physical
address

Physical
Memory

Subordinate Stack

Symbol
table

Main
program

Sqrt

IACE-Indian Academy Of Competitive Exams IBPS SO PROFESSIONAL KNOWLEDGE

Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 23

Segmentation is a memory – management‟s scheme that supports this user view of memory. A logical address

space is a collection of segments. Each segment has a name and a length. The addresses specify both the segment name and

the offset within the segment. The user therefore specifies each address by two quantities. a segment name and an offset.

(Contrast the scheme with the paging scheme, in which the user specifies only a single address, which is partitioned by the

hardware into a page number and an offset, all invisible the programmer)

For simplicity of implementation, segments are numbered and are referred to by a segment number, rather than by a

segment name. Thus, a logical address consists of a two tuple:

<segment – number. Offset>.

Normally, the user program is compiled, and the complier automatically constructs segments reflecting the input program.

A C complier. Might create separate segments for the following:

1. The code

2. Global variables

3. The heap, from which memory is allocated

4. The stacks used by each thread

5. The standard C library

Libraries that are linked in during compile time might be assigned separate segments. The loader would take all these

segments and assign them segment numbers.

FILE CONCEPT

 A file is a named collection of related information that is recoded on secondary storage. From a user‟s perspective,

a file is the smallest allotment of logical secondary storage; that is, data cannot be written to secondary storage unless they

are written a file. Commonly, files represent programs (both source and object forms) and data. Data files may be numeric,

alphabetic, alphanumeric, or binary. Files may be free from, such as test files, or may be formatted rigidly. In general, a file

is a sequence of bits, bytes, lines, or records, the meaning of which is defined by the file‟s creator and user. The concept

and user. The concept of a file is thus extremely general.

 The information in a file is defined by its creator Many different types of information may be stored in a file –

source programs, object programs, executable programs, executable programs, numeric data, text, payroll records, graphic

images, sound recordings, and so on. A file has a certain defined structure, which depends on its type. A text file is a

sequence of characters organized into lines (and possibly pages). A source file is a sequence of subordinates and functions,

each of which is further organized as declarations is followed by executable statements. An object file is a sequence of bytes

organized into blocks understandable by the system‟s linker. An executable file is a series of code sections that the loader

can bring into memory and execute.

FILE ATTRIBUTES

A file is named, for the convenience of its human users, and is referred to by its name. A name is usually a string of

characters, such as example „c‟. some systems differentiate between uppercase and lowercase characters in names, whereas

other systems do not. When a file is named, it becomes independent of the process, the user, and even the system that

created it. For instance, one user might edit that file by specifying its name. The file‟s owner might write the file to a floppy

disk, send it ill an e – mail, or copy it across a network, and it could still be called example „c‟ on the destination system.

A file‟s attributes vary from one operating system to another but typically consists of these.

¶ Name: The symbolic file name is the only information kept in human – readable form.

¶ Identifier: This unique tag, usually a number; identifies the file within the file system; it is the non – human –

readable name for the file.

¶ Type: This information is needed for systems that support different types of files.

¶ Location: This information is a pointer to a device and to the location of the file on that device.

Size: The current size of the file (in bytes, words, or blocks) and possibility the maximum allowed size are included

this attribute.

¶ Protection: Access – control information determines who can do reading, writing, executing, and so on.

¶ Time, date, and user identification: This information may be kept for creation, last modification, and last use.

These data can be useful for protection, security: and usage monitoring.

File Operations

A file is all abstract data type. To define a file properly, we need to consider the operations that can be performed

on files. The operating system can provide system calls to create, write, read, reposition, delete, arid truncate files. Let‟s

examine what the operating system must do to perform each of these six basic file operations. It should then be easy to see

how other; similar operations, such as renaming a file, can be implemented.

IACE-Indian Academy Of Competitive Exams IBPS SO PROFESSIONAL KNOWLEDGE

Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 24

¶ Creating a file: Two steps are necessary to create a file. First, space ill the file system must be found for the fill.

A11 entry for the new file must be made in the directory.

¶ Writing a file: To write a file, we make a system call specifying both the name of the file and the information to be

written to the file. Given the name of the file, the system searches the directory to find the file‟s location. The

system must keep a write pointer to the location in the file where the next write is to take place. The write pointer

must be updated whenever a write occurs.

¶ Reading a file: To read from a file, we use a system call that specifies the name of the file and where (in memory)

the next block of the file should be put. Again, the directory is searched for the associated entry, and the system

needs to keep a read pointer to the location in the file where the next read is to take place. Once the read has taken

place, the read pointer is updated. Because a process is usually either reading from or writing to a file, the current

operation location can be kept as a per process current file – position pointer. Both the read and write operations

use this same pointer saving space and reducing system complexity.

¶ Repositioning within a file: The directory is searched for the appropriate entry and the current – file - position

pointer is repositioned a given value. Repositioning within file need not involve any actual I/O. This file operation

is also known as a file seeks.

¶ Deleting a file: To delete a file, we search the directory for the name file. Having found the associated directory

entry, we release all file space, so that it can be reused by other files, and erase the directory entry.

¶ Truncating a file: The user may want to erase the contents of a file but keep its attributes. Rather than forcing the

user to delete the file and then recreate it, this function allow attributes to remain unchanged – except for file length

– but lets the file be reset to length zero and its file space released.

File Access Method

File store information. When it is used, this information must be accessed and read into computer memory. The

information in the file can be accessed in several ways. Some systems provide only one access methods for files. Other

systems, such as those of IBM, support many access methods, and choosing the right one for a particular application is a

major design problem.

Sequential Access

 The simplest access method is sequential access. Information in the file is processed in order, one record after the

other. This mode of access is by far the most common; for example, editors and compliers usually access files in this

fashion.

Fig: Sequential

Access file

Reads and writes make up the bulk of the operations on a file. A read operation – read next the next portion of the file and

automatically advances a file pointer, which tracks the I / O location. Similarly, the write operation – write appends to the

end of the file and advances to the end of the newly written material (the new end of file). Such a file can be reset to the

beginning: and on some systems, a program may be able to skip forward or backward n records for some integer n perhaps

only for n =1. Sequential access, is based on a tape model of file and works as well on sequential – access devices as it does

on random – access ones.

Direct Access

 Another method is direct access (or relative access). A file made up of fixed length logical records that allow

programs to read and write records rapidly in no particular order. The direct – access method is based on a disk model of a

file, since disks allow random access to any file block. For direct access, the file is viewed as a numbered sequence of

blocks or records. Thus, we may read block 14, then read block 53, and then write block 7. There are no restriction 0 11 the

order of reading writing for L1 direct access file. Direct – access files art of great use for immediate access to large amounts

of information. Databases are often of this type. When a query concerning a particular subject arrives, we compute which

block contains the answer and then read that block directly to provide the desired information.

rewind
% read

Or write

Beginning

Current
position

IACE-Indian Academy Of Competitive Exams IBPS SO PROFESSIONAL KNOWLEDGE

Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 25

 As a simple example, on an airline – reservation systems. We might store all the information about a particular

flight number. Thus the number of available seats for flight 713 is stored in block 713 of the reservation file. To store

information about a larger set, such as people, we might compute a hash function on the people‟s names or search a small in

memory index to determine block to read and search.

 For the direct – access method, the file operation must be modified to include the block number as a parameter.

Thus, we have read n, where n is the block number; rather than, read next, and write n rather than write next. An alternative

approach is to retain read next and write next, as with sequential access, and to add an operation position file to n, where n

is the block number. Then, to effect a read n, we would position to n and then read next.

WIN 32: The windows API for developing 32 bit applications. WIN32 is built into Windows 95 and Windows NT so

applications that rely on the API (WIN32 applications) should run equally well in both environments. It is also possible to

run some Win32 applications under older 16 – bit versions of windows by installing the Win32s runtime system.

PICO: Pico (Pine composer) is a text editor for Unix and Unix – based computer systems. It is integrated with the Pine e –

mail client.

PICO is a very simple and easy to use text editor offering paragraph justification, cut / paste, and a spelling checker.

SED: sed (stream editor) is a Unix utility that parses text and implements a programming language which can apply

transformations to such text. It reads input line by line (sequentially), applying the operation which has been specified via

the command line (or a sed script), and then outputs the line

Vi: Vi is a screen – oriented text editor originally created for the Unix operating system. The portable subset of the

behaviour of vi and programs based on it, and the ex editor language supported within these programs, is described by (and

thus standardized by) the Single Unix specification and POSIX.

LINT: In computer programming, lint was the name originally given to a particular program that flagged some suspicious

and non – portable constructs (likely to be bugs) in C language source code. The term is now applied generically to tools

that flag suspicious usage in software written in any compute language. The term lint – like behaviour is sometimes applied

to the process of flagging suspicious language usage. Lint – like tools generally perform static analysis of source code.

Mosaic: NCSA Mosaic, or simply Mosaic, is the web browser credited with popularizing the World Wide Web. It was also

a client for earlier protocols such as FTP, NNTP, and gopher. Its clean, easily understood user interface, reliability,

windows port and simple installation all contributed to making it the application that opened up the web to the general

public. Mosaic was also the first browser to display images inline. With text instead of displaying images in separate

window. While often described as the first graphical web browser, Mosaic was preceded by World Wide Web and the lesser

– known Erwise and Viola WWW.

 Mosaic‟s introduction, the most popular contemporary browsers, Google Chrome, Internet Explorer, and Mozila

Firefox retain many of the characteristics of the original Mosaic graphical user interface (GUI) and interactive experience.

 Netscape Navigator was later developed by Netscape, which employed many of the original Mosaic authors;

however, it intentionally shared no code with Mosaic. Netscape Navigator‟s code descendant is Mozila.

